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In [1], a cellular automaton with locators is defined. In this paper
we indicate some inaccuracies and issues of this definition and clarify
it to get rid of these issues. We also give examples of cellular automata
classes with locators that have good properties in a certain sense.
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1. Introduction

The concept of a cellular automaton (CA) with locators was introduced
in [1]. CA with locators is defined by a 8-tuple (Zn, Q, V,E,+, L, ϕ, ψ).
CA with locators in comparison with a conventional CA (Zn, Q, V, ϕ)
contains additional structure where different elementary automata (cells)
can broadcast signals from the set of broadcasting signals E computed by
the broadcasting function ψ. The signals are summed with the commutative
semigroup operation +. Locators of each cell receive the sum of signals
from the directions specified by the solid angles from the set L. CA
with locators can be considered as a mathematical model of a device
where there are both local interactions between adjacent cells and non-
local interactions through broadcasting, which can be implemented using
some kind of substrate that sums the signals from the cells due to some
physical principle. Such devices can potentially solve some problems in a more
natural way than conventional cellular automata, where sometimes we need
to develop complicated algorithms, in particular when we need to transmit
control signals.

2. Definition of a cellular automaton with locators
according to Gasanov

Let us recall the definition of a cellular automaton with locators introduced
by E. E. Gasanov in [1].

By a solid angle in Rk we mean the union of all the rays in the space Rk
emanating from a given point (vertex of an angle) and intersecting some

1 Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2020) 24, No.
4, 47-56 (in Russian).

2Kalachev Gleb Vyacheslavovich — Candidate of Physical and Mathematical Sciences,
Junior Researcher, Lomonosov Moscow State University, Faculty of Mechanics and
Mathematics, Problems of Theorecical Cybernetics Lab.



hypersurface in Rk. In the definition, we assume that a solid angle does not
contain its vertex. In particular, in this paper we consider two degenerate
cases: the full solid angle coinciding with Rk without the vertex of the angle,
which we denote by Ω, and solid angles equal to one ray. If a solid angle is a
ray, we denote it by a vector defining its direction.

A cellular automaton with locators is a 8-tuple

σ = (Zk, En, V, Eq,+, L, ϕ, ψ)

where Zk is the set of k-dimensional vectors with integer coordinates,
En = {0, 1, . . . , n − 1}, V = (α1, . . . , αh−1) is an ordered set of pairwise
different nonzero vectors from Zk, Eq = {0, 1, . . . , q−1}, + is a commutative
semigroup operation defined on Eq, L = (ν1, . . . , νm) is an ordered set of
pairwise different solid angles in Rk with a vertex at the origin, ϕ : Ehn×Emq →
En is a function depending on the variables x0, x1, . . . , xh−1, z1, . . . , zm such
that ϕ(0, . . . , 0) = 0, ψ : Ehn × Emq → Eq is a function that depends on the
variables x0, x1, . . . , xh−1, z1, . . . , zm. Here the variables x0, x1, . . . , xh−1 take
values from En and the variables z1, . . . , zm take values from Eq. Elements
of the set Zk are called cells of the cellular automaton σ; elements of the
set En are called cell states of the cellular automaton σ; the set V is called
the neighborhood pattern of the cellular automaton σ; elements of the set Eq
are called broadcasting signals; the set L is called the locator pattern of the
cellular automaton σ; the function ϕ is called the local transition function
of the automaton σ; the function ψ is called the broadcasting function of
the automaton σ. The state 0 is interpreted as rest state and the condition
ϕ(0, . . . , 0) = 0 is interpreted as a condition for maintaining the rest state.

Here we need to introduce an ordering of the neighborhood pattern V
and the locator pattern L in order to establish a one-to-one correspondence
between vectors from V and solid angles from L and variables x0,
x1, . . . , xh−1, z1, . . . , zm of the local transition function ϕ and the
broadcasting function ψ respectively. We can make this correspondence
more explicit if we index the variables of the functions ϕ and ψ by the
vectors and solid angles themselves, i.e. assume that the local transition
function ϕ and the broadcasting function ψ depend on the variables x0,
xα1 , . . . , xαh−1

, zν1 , . . . , zνm , where the index of the first variable is the zero
vector 0 = (0, . . . , 0) ∈ Zk. If we index the variables of the local transition
function and broadcasting function in this way, we can write them in any
order, and then we can define the neighborhood pattern and the locator
pattern simply as a set, not an ordered set.

In the rest of this section we use these conventions: consider the
neighborhood pattern as a set of vectors, and the locator pattern as a set
of solid angles and index the variables of the local transition function and
broadcasting function by the vectors from the neighborhood pattern and solid



angles from the locator pattern. At the same time, we often omit the outer
parentheses of the vectors in the indices. For example, if k = 2, n = 2, q = 2,
V = {(−1, 0), (1, 0)}, and L = {Ω, (0, 1)}, then a local transition function
may look like this: ϕ = x−1,0&zΩ ∨ x1,0&z0,1.

If α ∈ Zk, ν is a solid angle with vertex at the origin, then by ν(α) we
denote the solid angle obtained by translation of the angle ν to the point α.

If α ∈ Zk is a cell of a cellular automaton with locators σ, then the set
V (α) = {α, α + α1, . . . , α + αh−1} is called the neighborhood of the cell α,
and elements of the set L(α) = {ν1(α), . . . , νm(αm)} are called locators of
the cell α.

A state of a cellular automaton with locators σ is a pair (e, f), where e is
an arbitrary function from the set Zk to the set Eq, called broadcast state, f
is an arbitrary function from the set Zk to the set En and called distribution
of states of the cellular automaton with locators σ. Such a function can be
interpreted as a certain mosaic arising in the k-dimensional space as a result
of assigning a certain state from the set En and some signal from the set
Eq to each point with integer coordinates. The set of all possible states of a
cellular automaton with locators is denoted by Σ.

If α ∈ Zk and (e, f) is a state of a cellular automaton with locators σ,
then the value e(α) is called the signal of the cell α, defined by the state (e, f),
and the value f(α) is the state of the cell α, determined by the state (e, f).
For each i ∈ {1, . . . ,m} the value

si(α) =
∑

β∈νi(α)∩Zk

e(β) (1)

we call the value of the locator νi, determined by the state (e, f). Here, in the
summation the semigroup operation + defined on Eq is used.

On the set Σ we define the global transition function Φ of a cellular
automaton with locators σ, putting Φ(e, f) = (e′, f ′), where (e, f), (e′, f ′) ∈
Σ and for any cell α ∈ Zk the following identities hold

f ′(α) = ϕ(f(α), f(α+ α1), . . . , f(α+ αh−1), s1(α), . . . , sm(α)), (2)

e′(α) = ψ(f(α), f(α+ α1), . . . , f(α+ αh−1), s1(α), . . . , sm(α)). (3)

A meaningful interpretation of the mapping Φ is that the signal of each
cell and the state of each cell “after the transition” is determined by the state
of the neighborhood of the cell and by the values of the locators “before the
transition” using the rules ψ and ϕ in the same way for all cells.

By the behavior of a cellular automaton with locators σ we call a sequence
(e0, f0), (e1, f1), (e2, f2), . . . of states such that the equation (ei+1, fi+1) =
Φ(ei, fi) holds for all i = 0, 1, 2, . . .. The state (ei, fi) is called the state of



the cellular automaton with locators σ at the time i, and (e0, f0) is also called
the initial state of the cellular automaton with locators σ.

A state of a cellular automaton is called a configuration if only a finite
number of cells is in a state other than 0 and the signals of all cells are zero.
The set of configurations is denoted by Σ′.

If a certain state of a cellular automaton is specified, then cells that are
in a state other than 0 are called active.

3. Corrections for the definition

3.1. Restriction on solid angles

According to the definition in Section 2, a solid angle is a union of rays
intersecting some hypersurface. However, even in the two-dimensional case,
an angle is defined by a real number which can be used to encode an infinite
amount of information. For the two-dimensional case, we propose to restrict
the set of solid angles to the set of angles bounded by rays going through
points with rational coefficients.

For the multidimensional case, there is even more freedom of choice of a
solid angle. In this case, we propose to introduce the following restriction:
the boundary of a solid angle should consist of hyperplanes spanned by
points with integer coordinates. Note that degenerate solid angles completely
contained in a subspace of a lower dimension are also allowed. Boundary of
such a degenerate angle should consist of parts of hyperplanes specified by
linear equations with integer coefficients.

3.2. Restrictions on the semigroup and the broadcasting
function

The definition of cellular automaton requires the existence of a distinguished
zero state which is preserved by the transition function. It is natural to
add a similar requirement for the broadcasting alphabet. Formally, in [1]
the set E always has a form {0, ..., q − 1} and contains 0, however, there is
no requirement that 0 + x = 0. We propose not to require that E has the
form {0, ..., q − 1} but could contain elements of arbitrary type (apart from
numbers, it is often convenient to use pairs or sets of numbers), but require
that the semigroup (E,+) is a monoid, i.e. there exists a neutral element
0 ∈ E such that 0 + x = x for all x ∈ E.

In [1] there is a restriction on the transition function ϕ(0,0) = 0. It is
natural to add a similar restriction on the broadcasting function:

ψ(0, ν) = 0,



i.e. an inactive cell that doesn’t have active neighbors cannot broadcast
nonzero signals.

3.3. Partial definiteness of the global transition function

In equation (1) the value of locator si(α) is defined as a sum of the infinite
number of terms by the integer points of the solid angle where a semigroup
operation is used as an addition. An infinite sum is understood here in the
usual sense (as the limit of partial sums) with the clarification that a discrete
topology is introduced on the set E. In this case, for the series to converge, it
is necessary that starting from some moment, the partial sums are equal to a
constant, which is the sum of the series. This sum can be undefined if the sum
involves an infinite number of nonzero terms. In the general case, the value of
the locator is a partially defined function. Hence the global transition function
of the CA with locators is also partially defined. However, even here a proof
of correctness is required, namely, we need to prove that the convergence of
the series (1) and the value of the sum does not depend on the order of terms
(in the case of numerical series, this is true only for absolutely convergent
series).

Proposition 1. Let (E,+) be a commutative semigroup with discrete
topology. Let {xj}∞j=1 be a sequence of elements E, {yj}∞j=1 be its permutation
(yj = xij ). Then if one of the series

∑∞
j=1 xj and

∑∞
j=1 yj converges, then

the second also converges and their sums coincide.

Доказательство. The proof goes by way of contradiction. Without loss of
generality, assume that

∑∞
j=1 yj = a, and the series

∑∞
j=1 xj either diverges

or its sum is not equal to a. This means that in the sequence of partial sums
(Xn)∞n=1, Xn =

∑n
j=1 xj there is an infinite number of terms not equal to a.

Since the first series converges, there exists N0 such that for all n ≥ N0 the
partial sum Yn =

∑n
j=1 yj is equal to a. This means that a + yj = a for all

j > N0.
We denote Kn = {j | ij ≤ n}. Take N ≥ maxj≤N0 ij such that XN = b 6=

a. By construction 1, 2, ..., N0 ∈ KN . Hence

b = XN =

N∑
j=1

xj =
∑
k∈KN

yk =

N0∑
k=1

yj +
∑

j>N0,j∈KN

yj = a+
∑

j>N0,j∈Kn

yj = a.

However b 6= a by our assumption, and we have a contradiction. Hence∑∞
j=1 xn = a, as required.

A state of a CA with locators is called finite if there is only a finite number
of active cells. Note that, taking into account the previous corrections, for



finite states the global function is defined since only active cells can broadcast
nonzero signals. However, consider such a CA with locators:

σ = (Z, {0, 1},∅, {0, 1},max, {Ω},max,max),

where Ω corresponds to the locator that receives signals from all directions.
Suppose at the first moment there is exactly one cell is in state 1, and thus
the state is finite. Then this call broadcasts signal 1 and all the cells at the
second moment receive signal max(0, 1) = 1, hence they go to state 1 at the
third moment. Therefore, the state at the third moment is not finite. If we
take ⊕ instead of max as a semigroup operation, then the functioning at the
first two moments will be the same, and at the third moment, the transition
function will not be defined.

4. Interesting classes of CA with locators

4.1. Classes solving the problem of partial definiteness of the
transition function

Taking into account the example from the Section 3.3, it is important to find
classes of CA with locators (Z, Q, V,E,+, L, ϕ, ψ), where the definiteness of
the global transition function is guaranteed at any moment of time for some
class of initial conditions.

4.1.1. Idempotent monoid

Consider the case when the monoid (E,+) is idempotent (is a semilattice),
that is, x+x = x for all x ∈ E. In this case, the sum of an infinite number of
terms depends only on the set of terms present in the sum, and thus reduces
to a finite sum. Therefore, we have the following statement.

Proposition 2. If the monoid (E,+) is idempotent, then the global transition
function of a CA with locators σ = (Z, Q, V,E,+, L, ϕ, ψ) is defined
everywhere.

For example, if E is a linearly ordered set, then (E,max) is an idempotent
monoid with neutral element minE.

4.1.2. Finite CA with locators

We will say that the CA with locators σ is finite if for any finite state S of
σ the next state Φ(S) is also finite.



Proposition 3 (Sufficient condition for the finiteness of a CA with locators).
Let σ = (Zn, Q, V,E,+, {ν1, ..., νm}, ϕ, ψ) be a CA with locators satisfying the
following condition:

if ϕ(~0, (e1, ..., em)) 6= 0, then
⋂
i:ei 6=0

νi = ∅.

Then σ is finite.

In this statement it is important that we exclude vertex from the solid
angle, otherwise, the intersection of the solid angles νi would always contain
the origin.

Доказательство. Consider an arbitrary finite state s. Let A be a set of all
cells that are either active itself or have active neighbors, r be the maximum
Euclidean distance between elements of A.

Suppose the state Φ(s) is not finite. In this case, there is an infinite set
M of cells that was not active and didn’t have active neighbors in the finite
state s and that became active in the state Φ(s). For each cell x from M
consider the set of its active locators a(x) and choose such a set of locators
L′ ⊂ L that occurs infinitely many times among a(x) for x ∈ M . Let M ′ =
{x ∈M : a(x) = L′}.

Without loss of generality we assume that L′ = ν1, ..., νk. From the
statement condition we have

⋃k
j=1 νj = ∅.

Let S be the unit sphere in Rn, P =
∏k
j=1(νij ∩ S). Let us show that

d̂ := inf
p∈P

max
1≤j,j′≤k

‖pj − pj′‖ > 0, (4)

where ‖ · ‖ is the Euclidean norm.
Note that each set νij ∩ S is compact, therefore, their product P is also

a compact set. Hence continuous function d(p) := maxj 6=j′ ‖pj − pj′‖ reaches
its minimum on the compact set P . Suppose, this minimum is 0. Then there
exist p ∈ P , pj ∈ νj such that pj = pj′ for all 1 ≤ j, j′ ≤ k, that is,
p1 = .... = pk ∈

⋂k
j=1 νj = ∅, and we obtain a contradiction. Hence (4) is

satisfied.
Since the set M ′ is infinite, there exists an element x ∈ M ′ located at a

distance D > r/d from the set A. Since the cell x has the locators ν1, ..., νk
active, there exist elements y1, ..., yk ∈ A such that vj = yj − x ∈ νj . Put



pj =
vj
‖vj‖ . Then for any 1 ≤ i, j ≤ k the following holds:

‖pi − pj‖2 = ‖pi‖2 + ‖pj‖2 − 2(pi, pj) = 2− 2
(vi, vj)

‖vi‖‖vj‖
≤

≤ ‖vi‖
‖vj‖

+
‖vj‖
‖vi‖

− 2
(vi, vj)

‖vi‖‖vj‖
=
‖vi − vj‖2

‖vi‖‖vj‖
≤

≤ ‖vi − vj‖
2

D2
=
‖yi − yj‖2

D2
≤ r2

D2
< d2.

Thus, max1≤i,j≤k ‖pi − pj‖ < d. On the other hand, pj ∈ νj ∩ S, that is,
p = (p1, ..., pk) ∈ P which contradicts (4). Hence, our assumption is wrong,
and the state Φ(s) is finite which completes the proof.

4.2. Class with simple physical implementation

It is most natural to imagine the implementation of a CA with locators as
a chip. The broadcasting should be implemented by some device that “sums
up” an unlimited number of electrical signals. Such a device can consist of the
following elements: a conductor connected to all cell outputs to be summed;
an amplifier with the input connected to the conductor and output connected
to the locator inputs of all the cells. Thus, if one of the cells emits a signal,
this signal will be amplified and signal 1 will come to the locators of all cells.
If all the cells emit 0, then 0 will come to the locators of all cells as well. In
such a way we can implement the operation max from an unlimited number
of arguments taking values from the set {0, 1}.

However, for a CA with locators, it is required to be able to calculate
maxi 6=j aj for all i = 1, ...,m. Note that

max
j 6=i

aj = min
(∑
j 6=i

aj , 1
)

= min
(

min
( m∑
j=1

aj , 2
)
− ai, 1

)
.

it is also possible to implement operation M2(a1, ..., an) = min(
∑m

j=1, 2),
but more difficult than the operation max. For example, this can be done as
follows. Each input representing an operation argument equal to 1 outputs
a limited current to the wire connecting all the arguments and connected
to the neutral wire through a resistor. Depending on the number of inputs
equal to 1, there would be different voltages on the connecting conductor.
The conductor itself can be connected to two comparators, of which one
is triggered at voltage when at least one input is active, and the other is
triggered when at voltage when at least 2 inputs are active. Using the results
of these comparators, it is easy to obtain the value of the functionM2. Then,
through the common wire, we can connect the result s = M2(a1, ..., am) back



to all cells, and calculate min(s − ai, 1) in the i-th cell. Thus, the result in
i-th cell is maxj 6=i aj as required.

Using n copies of such a circuit, we can implement the Max operation on
the set {0, 1}n, which is a component-wise max operation:

Max((a1
1, ..., a

1
n), · · · , (am1 , ..., amn )) = (max(a1

1, ..., a
m
1 ), · · · ,max(a1

n, ..., a
m
n )).

Let show that arbitrary idempotent commutative monoid (E,+) where
|E| = n < ∞ can be implemented using operation Max and ordinary
logic gates. To do this, we encode nonzero elements of E by the tuples
(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1) ∈ {0, 1}n−1, and we encode 0 ∈ E
by the all-zero tuple. Let v be the described encoding function. For the set
E′ = {e1, ..., em} ⊆ E, we define v̂(E′) = Maxe∈E′ v(e). In the tuple v̂(E′)
ones occur at positions corresponding to nonzero elements of the set E′.
Boolean operator F : v̂(E′) 7→ v(

∑
e∈E′ e) can be implemented by a logic

circuit. Using the idempotency of the monoid, for an arbitrary number of
arguments we have

v
(∑
i∈I

ei

)
= v
( ∑
e∈{ei|i∈I}

e
)

= F (v̂({ei | i ∈ I})) = F (Max
i∈I

v(ei)).

So, we proved that for any finite idempotent monoid it is possible to
implement its semigroup operation from an unlimited number of elements
using a fixed logic circuit and several conductors connected to all cells whose
outputs are summed up.

This is exactly the class of monoids from Section 4.1.1, for which the
global transition function is defined everywhere. The situation with the
implementation of locators is worse. The conductor conducts in the same
way in all directions. If we use diodes that pass current only in one direction,
the depth of the circuit will immediately become linear in the number of
arguments, and in this case, it is no longer possible to say that the broadcast
is instant, thus the goal of using this model is lost. Therefore, only solid angles
coinciding with subspaces can be implemented by the described method. For
example, Ω is implemented if the outputs of all cells are connected with a
plate. We can make a layer with many wires going in the same direction.
Thus we can implement the locator {v,−v}, where v is the direction of the
wires in this layer.

Implementation of other locators requires the use of some other physical
principles that go beyond conventional circuit design.
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