Использование алгоритма имитации отжига для оптимизации параметров идентификатора динамики платформы на основе дифференциальных нейронных сетей

A. M. Myxamego¹

На точность идентификации дифференциальными нейронными сетями значительное влияние оказывают параметры функций активации. Предложен способ оптимизировать эти параметры с помощью алгоритма имитации отжига, результаты оптимизации продемонстрированы на примере задачи идентификации динамики платформы.

Ключевые слова: дифференциальные нейронные сети, глобальная оптимизация, алгоритм имитации отжига.

Одним из подходов к анализу нелинейных систем с неопределенностями являются дифференциальные нейронные сети. Они позволяют аппроксимировать динамику нелинейной части системы с помощью произведений матриц из функций активации и весовых коэффициентов. Пример подобной системы представлен в [2]. В отличие от статических нейронных сетей, весовые коэффициенты изменяются в процессе работы дифференциальных сетей, причем правила, задающие их динамику, определяют сходимость всей системы. При этом, точность работы и скорость сходимости определяются и выбором конкретных функций активации и их параметров. Таким образом, возникает задача поиска значений параметров, обеспечивающих лучшую сходимость для рассматриваемых систем и архитектуры сети.

Алгоритмы имитации отжига позволяют решать подобные задачи многомерной оптимизации, производя стохастический поиск по пространству допустимых значений. При этом переход в новую точку с некоторой вероятностью возможен и при ухудшении значения целевой функции. Это позволяет алгоритму выходить из локальных экстрему-

¹ Мухамедов Артур Мансурович — аспирант каф. фундаментальной и прикладной математики ф-та космических исследований МГУ им М.В. Ломоносова; младший научный сотрудник НЦМУ "Сверхзвук"МГУ им М.В. Ломоносова, e-mail: a.mukhamedov@vrmsu.ru

Mukhamedov Arthur Mansurovich — graduate student, Lomonosov Moscow State University, Faculty of Space Research, Chair of Fundamental and Applied Mathematics; junior researcher, Lomonosov Moscow State University, Center "Supersonic".

мов. Вероятность перехода в точку с худшими показателями регулируется параметром температуры, уменьшающимся в процессе работы алгоритма. При высоких значениях температуры поведение алгоритма похоже на случайный поиск, а при низких — на градиентый спуск. Такое поведение может быть полезно при оптимизации параметров функции активации.

В качестве примера рассмотрена задача идентификации динамики подвижной платформы с тремя степенями свободы (высота, углы крена и тангажа). Высота была зафиксирована таким образом, чтобы максимизировать область достижимости по двум другим осям. Во время работы платформы углы крена и тангажа, составляющие вектор управления платформы, менялись по узлам сетки с постоянным шагом. Выходные значения рассматриваемой системы задавались позицией и ориентацией платформы, которые были получены с помощью гибридной позиционно-инерциальной системы отслеживания. Идентификация производилась сетью следующего вида:

$$\begin{aligned} x_{i+1} &= Ax_i + 0.5(W_{1_{i+1}} + W_{1_i}) * \sigma(x_i) + 0.5(W_{2_{i+1}} + W_{2_i}) * \varphi(x_i)U_i \\ \sigma_m(x) &= \frac{1}{1 + \exp(xC_m^{\sigma} + b_m^{\sigma})} + d_m^{\sigma} - e_m^{\sigma} \\ \varphi_{m,n}(x) &= \frac{1}{1 + \exp(xC_{m,n}^{\varphi} + b_{m,n}^{\varphi})} + d_{m,n}^{\varphi} - e_{m,n}^{\varphi}, \end{aligned}$$

где $d_m^{\sigma}, e_m^{\sigma}, d_{m,n}^{\varphi}, e_{m,n}^{\varphi} > 0, C^{\sigma} \in \mathbb{R}^{6 \times 6}, b^{\sigma}, d^{\sigma}, e^{\sigma} \in \mathbb{R}^{6}, C^{\varphi} \in \mathbb{R}^{6 \times 6 \times 6}, b^{\varphi}, d^{\varphi}, e^{\varphi} \in \mathbb{R}^{6 \times 6}$ — параметры функций активации, которые нужно оптимизировать.

Традиционный алгоритм имитации отжига предназначен для оптимизации по дискретному пространству значений. Поэтому в данной работе используется описанная в [1] модификация для работы в непрерывных пространствах. Выбор следующей точки происходит смещением по одной координате *i* на значение, не превышающее элемент *i* шагового вектора. После смещения и проверки полученных точек по всем координатам N_s раз происходит изменение шагового вектора так, чтобы выбранные новые точки принимались в половине случаев. После изменения шагового вектора N_T раз, происходит снижение температуры с постоянным множителем. Критерием останова служит неулучшение значения целевой функции после $N_e ps$ уменьшений температуры. Заданы следующие значения параметров: $N_T = 2$, $N_s = 3$, $N_e ps = 2$. Значенияя всех прочих параметров были взяты из [1]. При оптимизации использовались три целевые функции:

$$E_A = \sum_i \sqrt{\sum_{m,n} \Delta_{i_{mn}}^2},$$

$$E_D = \sum_i \Delta_i^T \Delta_i,$$
$$E_I = \sum_i (tr(dW_{1_i}^T dW_{1_i}) + tr(dW_{2_i}^T dW_{2_i}) + \Delta_i^T \Delta_i),$$

где $\Delta_i = \hat{x}_i - x_i$ — ошибка идентификации, $dW_{l_i} = W_{l_i} - \overline{W_l}, l \in \{1, 2\}, \overline{W_l}$ — среднее значение W_{l_i}, x_i — вектор состояния системы в момент i, W_{l_i} — матрица весовых коэффициентов дифференциальной нейронной сети в момент i. Первые две функции зависят только от ошибки идентификации Δ_i , третья (E_I) также зависит от отклонения матрицы весов от среднего значения, то есть помимо снижения общей ошибки, при оптимизации с такой целевой функцией должны снижаться колебания матрицы весов.

Алгоритм был запущен независимо для каждой целевой функции с одинаковыми начальными условиями. Все три запуска завершили свою работу по выполнении терминального условия. Результаты работы представлены в таблице 1.

Целевая функция	Значение E_A	Значение E_D	Значение E_I
Начальное условие	20.3345	0.3393	0.8144
E_A	16.4802	0.3054	0.7057
E_D	17.1420	0.2802	0.6615
E_I	16.9865	0.2817	0.6633

Таблица 1. Результаты работы алгоритма имитации отжига с различными целевыми функциями

Можно заметить, что результаты оптимизации по функциям E_D и E_I приводит к похожим результатам по двум метрикам, но по E_A более высокий результат показывает оптимизация по E_I . Оптимизация по E_A привела к лучшему результату по своей функции, по двум другим полученный результат хуже результатов оптимизации по соответствующим функциям. Таким образом, учет в целевой функции не только ошибки идентификации, но и других компонентов, например динамики весовых коэффициентов, позволяет достичь более высокой точности по одним метрикам, неухудшая другие. Влияние этих компонентов является целью дальнейших исследований.

Список литературы

 Corana A., Marchesi M., Martini C., Ridella S., "Minimizing multimodal functions of continuous variables with the "simulated annealing" algorithm", *ACM Transactions on Mathematical Software (TOMS)*, 13:3 (1987), 262–280. [2] Poznyak A., Chairez I., Poznyak T., "A survey on artificial neural networks application for identification and control in environmental engineering: Biological and chemical systems with uncertain models", Annual Reviews in Control, 48 (2019), 250–272.

Application of simulated annealing algorithm to optimize parameters of differential neural network-based identifier of platform dynamics Mukhamedov A.M.

Parameters of activation functions contribute a lot to the performance of differential neural network-based identifiers. An approach to optimize these parameters is proposed and demonstrated for the problem of identification of platform dynamics.

Keywords: differential neural networks, global optimization, simulated annealing algorithm.

References

- Corana A., Marchesi M., Martini C., Ridella S., "Minimizing multimodal functions of continuous variables with the "simulated annealing" algorithm", *ACM Transactions on Mathematical Software (TOMS)*, 13:3 (1987), 262–280.
- [2] Poznyak A., Chairez I., Poznyak T., "A survey on artificial neural networks application for identification and control in environmental engineering: Biological and chemical systems with uncertain models", Annual Reviews in Control, 48 (2019), 250–272.